If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=120+96S-16S^2
We move all terms to the left:
-(120+96S-16S^2)=0
We get rid of parentheses
16S^2-96S-120=0
a = 16; b = -96; c = -120;
Δ = b2-4ac
Δ = -962-4·16·(-120)
Δ = 16896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16896}=\sqrt{256*66}=\sqrt{256}*\sqrt{66}=16\sqrt{66}$$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{66}}{2*16}=\frac{96-16\sqrt{66}}{32} $$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{66}}{2*16}=\frac{96+16\sqrt{66}}{32} $
| (x+5)÷2+x÷3=20 | | y2+7y-60=0 | | 4x2+6x-28=0 | | x^+x^2-9x-9=0 | | y^2-3y-6y+8=0 | | y^2-3y-6y+8=8 | | 10x-(2x-10)=7+7x | | 3(-5x+8)=54 | | 3(-5x+8)=52 | | 2a-6=4(3a+1)-2 | | 13/4a=21 | | -6(4x-3)+5(5x-2)-2=6-7 | | 8x-39=-3(x-9) | | -2(5s-4)-8=-2(8s+9)-2 | | 5(j-6)+6(j-22)=3 | | 8x-39=-3(x=-9) | | 180/x^2=5 | | -8u+6(u-3)=-30 | | 41x^2=1239 | | 6=0.2x-0.3x-3 | | 4x^2=1239 | | x^2=1239 | | |6y|+10=52 | | 16t^2+72t=0 | | -1/6(x-12)+1/2(x+2)=x-12 | | -2.4-5x-5.9-3x=-7x+4.7 | | C=23.4r | | 6y2-37y+35=0 | | 9x2-4x-5=0 | | (30-x)^2=0 | | 24y2+58y+28=0 | | 27x2+27x+6=0 |